Abstract

Highly porous polymer-derived SiCN(O) and SiOC ceramics with low thermal conductivity were developed by replicating polyurethane (PU) foams. The PU templates were impregnated with polysilazane or polysiloxane precursor, followed by pyrolysis at different temperatures (1200 °C - 1500 °C) yielding SiCN(O) or SiOC ceramic foams, respectively. The swelling and cross-linking behavior of the used precursors had a significant impact on the morphology of the prepared foams. The samples had bulk densities ranging from 0.03 g.cm-3 to 0.56 g.cm-3 and a total porosity in the range from 75 to 98 vol%. Fourier transform infrared (FT-IR), Raman spectroscopy, X-ray diffraction (XRD) were employed to follow the structural evolution together with morphological characterization by scanning electron microscopy (SEM). The obtained ceramics were thermally stable up to 1400 °C, and the linear thermal expansion coefficient values of the porous SiCN(O) and SiOC components in the temperature range from 30 to 850 °C were found to be ~1.72 x 10-6.K-1 and ~1.93 x 10-6.K-1, respectively. Thermal conductivity (λ) as low as 0.03 W.m-1 K-1 was measured for the SiCN(O) and SiOC foams at room temperature (RT). The λ of the ceramic struts were also assessed by using the Gibson-Ashby model and estimated to be 2.1 W.m-1 K-1 for SiCN(O), and 1.8 W.m-1 K-1 for SiOC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.