Abstract

Human hair is a biofiber having an exceptional chemical composition, higher strength in tension, and slow decomposition rate. In the present work, composites are fabricated by simple hand layup technique with epoxy matrix and different proportions of hair fiber (0, 5, 10, 15, and 20 wt%). Physical, mechanical, microstructural, and thermal characterization of the composite samples has been done by following the proper ASTM standards. A theoretical model has been developed to predict the effective thermal conductivity of the composite. Based on this model, a mathematical correlation between the effective thermal conductivity of the composite and the fiber content is developed. The results obtained from this correlation are in good agreement with the experimental data. This study explores the possibility of fabricating a class of epoxy composites with higher mechanical strength, superior insulation capability, improved glass transition temperature, and a low thermal expansion coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.