Abstract

Prealloyed rapidly solidified Al-Fe-Ni alloy powder with dispersoid volume fractions of 0.19, 0.25, and 0.32 FeNiAl9 was produced by air atomization. The powder was degassed, canned, and consolidated to full density by vacuum hot pressing and extrusion or by direct extrusion. Microstructures in the alloy powder and consolidated material were characterized by means of optical, scanning (SEM), and transmission electron microscopy (TEM) and constituent phases identified by X-ray diffraction. The coarsening kinetics of the FeNiAl9 dispersoid were moni- tored by differential scanning calorimetry (DSC) and by quantitative metallography. Atomized powders exhibited two scales of microstructures: optically featureless regions and regions with a coarse dispersoid morphology. Within the featureless regions, there are three morphologies, namely, a fine uniform precipitate microstructure, a cellular microstructure, and an eutectic microstructure. The only dispersoid observed in the atomized powders and consolidated material was FeNiAl9). The two scales of microstructure were retained after consolidation, and after hot extrusion, the typical microstructure consisted of a recovered matrix structure with a grain size of 0.2 to 0.3 μm and equiaxed intermetallics of average diameter 0.1 μm. The microstructure was resistant to coarsening up to approximately 370 °C. Coarsening kinetics in this alloy system were consistent with a grain boundary diffusion model (activation energy 146 kJ/mol) and were not appreciably affected by dispersoid volume fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call