Abstract

A hydroxyapatite (HA) particulate reinforced ultrahigh molecular weight polyethylene (UHMWPE) nanocomposite was fabricated by compounding HA and UHMWPE mixtures in paraffin oil using twin-screw extrusion and then compression molding. Scanning electron microscope images revealed that HA aggregates were broken down to nano-sized particles and homogeneously dispersed in UHMWPE by the combined processes of twin-screw extrusion and UHMWPE swelling treatment. Transmission electron microscope images indicated the HA particles and UHMWPE matrix were intimately contacted through mechanical interlocking. The composite with the HA volume fraction of 0.23 exhibited a Young's modulus nine times higher than that of UHMWPE, while the composite maintained the excellent toughness feature of UHMWPE. The fracture strain reached over 300%, significantly higher than other types of biocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.