Abstract
Abstract The use of chromium (III) acetylacetonate as a source of nanometre sized chromium particles for the production of Al 2 O 3 –5 vol.% Cr nanocomposites has been investigated. The details of the processing procedure are crucial in determining the mechanical properties of the composite. The highest strength and fracture toughness, 736±29 MPa and 4.0±0.2 MPa m 1/2 , respectively, were obtained for the nanocomposite hot pressed at 1450 °C. It is shown that the strengthening in Al 2 O 3 –5% Cr nanocomposites mainly results from microstructure refinement in that the mean alumina matrix grain size in the optimum composite was 0.68 μm compared with a grain size of 3.6 μm in the monolithic alumina hot pressed under identical conditions. Crack bridging and crack deflection by the nano-sized Cr particles did not occur to any significant extent. The slight improvement in fracture toughness may result from the observed change in fracture mode from intergranular fracture for monolithic alumina to transgranular failure for the nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.