Abstract

Stereolithography, as a well-known rapid prototyping process, has been used in a wide field of technical and also medical applications. Due to the stereolithography principle – the curing of a liquid photopolymer by a UV laser – the number of commercially available reaction mechanisms and related material characteristics is very limited. Our paper presents a novel class of non-toxic, biocompatible polyether(meth)acrylate-based resin formulations with outstanding flexible material characteristics. In contrast to the mostly rigid commercial engineering materials, these polymeric formulations are able to meet the demands for soft to stiff parts. Depending on the individual formulation, the cured resins can show a Young's modulus from 25 MPa up to 1500 MPa. We give an overview over basic formulations and processing characteristics for this material class. Process parameters were studied in a commercial Viper Si² system (3D Systems); mechanical properties of different formulations were tested using standard tensile testing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.