Abstract
Functionally graded rubber compounds (FGRCs) were prepared by construction based method. The matrix used was natural rubber (NR). Amorphous carbon black (N-330) was used as grading material. The gradation of nanoparticles in a rectangular geometry comprised the variation of particle volume fraction along thickness direction. Its performance was evaluated for structural application through various mechanical and surface properties like tensile strength, modulus, tear strength, elongation at break, hardness, fracture surface by scanning electron microscopy, etc. At the same percentage of nanofiller loading, FGRCs show enhanced properties, i.e., modulus and tear strength (in some grades) compared to uniformly dispersed rubber compounds (UDRCs). Modulus of FGRCs, for a given particular stacking sequence of the layers, increases as much as by 275% compared to UDRCs. The ultimate properties like tensile strength and elongation at break made up for the modulus enhancement that decreases to as minimum as 50 and 80%, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.