Abstract

In the present paper, the effect of gallium (Ga) substitution on structural, microstructural, electrical conductivity of Pb(ZrTi)O3 (PZT) in the morphotropic phase boundary (MPB) region (i.e., Pb0.96Ga0.04(Zr0.48Ti0.52)0.99O3 (PGaZT-4)) was investigated. Increased grain density increases the resistivity of the Ga-modified PZT system. Preliminary structural analysis using X-ray diffraction pattern and data showed the existence of two phases [major tetragonal (T) and minor monoclinic (M)]. Field emission scanning electron micrograph (FESEM) showed the distribution of spherical as well as platelet type grains with small pores. The behavior of dielectric constant with temperature of PGaZT-4 exhibited the suppression of the ferroelectric phase transition [i.e., disappearance of Curie temperature (Tc)]. The complex impedance spectroscopy (CIS) technique helped to investigate the impedance parameters of PGaZT-4 in MPB region in a wide range of temperature (250–500 °C) and frequency (1–1000 kHz) region. The impedance parameters of the material are found to be strongly dependent on frequency of AC electric field and temperature. The substitution of gallium at the Pb site of PZT generally enhances the dielectric constant and decreases loss tangent. The AC conductivity vs frequency (f = ω2π) in the region of dispersion follows the universal response of Jonscher’s equation. Enhanced resistive characteristics were observed for Ga-substituted PZT in comparison to the pure PZT, which was well ensured from the studies of electrical parameters, such as impedance and AC conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call