Abstract

The sintering processing of hydroxyapatite (HAP) powder was studied using selective laser sintering for bone tissue engineering. The effect of laser energy density on the microstructure, phase composition and mechanical properties of the sintered samples was investigated. The results indicate that the average grain size increases from 0.211 ± 0.039 to 0.979 ± 0.133 μm with increasing the laser energy density from 2.0 to 5.0 J/mm2. The maximum value of Vickers hardness and fracture toughness were 4.0 ± 0.13 Gpa and 1.28 ± 0.033 MPam1/2, respectively, when the laser energy density was 4.0 J/mm2. The XRD results indicated that the nano-HAP was decomposed into TCP with the laser energy density of above 4.0 J/mm2. In vitro bioactivity after soaking in simulated body fluid (SBF) for 3 ∼ 12 days showed that a bone-like apatite layer on the surface of the sintered samples. It indicated that the HAP scaffold possesses favorable mechanical properties and bioactivity, and may be used for bone tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.