Abstract

In the present investigation, bromoborosilicate glass of composition 6Na2O-19K2O-10BaBr2- 2Al2O3-15B2O3-48SiO2 (mole %) added with 0.2 wt% SnO, co-doped with 0.001 wt% Ag and 0.7 wt% Er2O3 in excess amount, was prepared by melt-quench technique. The metal-glass nanocomposites were derived involving a single-step in-situ thermochemical reduction of the precursor glass subjecting an isothermal heat-treatment protocol. The precursor glass and metal glass nanocomposites were characterized by dilatometer, differential scanning calorimeter, X-ray diffractometer, field emission scanning electron microscope, transmission electron microscope, Fourier transform infrared spectrometer, UV-Vis-NIR spectrophotometer, fluorimeter etc. XRD spectra represent the amorphous nature of the samples and without having any sharp peaks of silver (Ag0) and barium bromide (BaBr2). But the FESEM micrograph shows the presence of BaBr2 crystallites in clusters and the TEM micrograph shows the presence of AgO nanoparticles of different shapes and sizes. The precursor glass sample shows sharp absorption peak at 378 nm and 521 nm due to the 4G11,2 and 2H11/2 energy levels of Er3+ but glass nanocomposites exhibit another band at 410 nm due to the surface plasmon resonance of Ag0 nanoparticles. They also show sharp emis- sion peak at 1542 nm due to 4115/2 -+4l13/2 transition of Er3+ ions and prominent upconverted peaks at 630 nm (red, medium) and 645 nm (red, strong) due to 4F9/2 + 1 15/2 transition. The intensity of the absorption and upconverted peaks increases with the duration of heat treatment, having maximum intensity at 5 h and the intensity of the emission peak increases with heat treatment upto 1 h and then decreases for 5 h. Thus these metal-glass nanocomposites show enhanced photoluminescence upconversion and are promising material for different photonic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call