Abstract

Abstract In this paper we describe the synthesis, processing and characterization of a novel elastic polyester coating created by carrying out catalyst-free polyesterification between biocompatible and non-toxic multifunctional reactants, namely polycaprolactone triol and citric acid. The physico-chemical and surface properties of the resulting polyester coatings and films have been investigated. This new material has been characterized by matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS), nuclear magnetic resonance spectroscopy (NMR), Fourier-transform infra-red spectroscopy (FTIR), water-in-air contact angle measurements, scanning electron microscopy (SEM), thermal analysis (DSC), mechanical tests and swelling experiments. The polymer structure, surface properties (morphology and chemistry), mechanical integrity and hydration of the elastomer can be controlled by simple variation of the initial citric acid concentration in the polymer formation. This feature of the novel polyester material presents a significant development in the production of advanced coatings for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call