Abstract

During solidification of many so-called high-performance engineering alloys, such as 6000 and 7000 series aluminum alloys, which are also unweldable autogenously, volumetric solidification shrinkage and thermal contraction produces voids and cracks. During additive manufacturing processing, these defects can span the length of columnar grains, as well as intergranular regions. In this research, laser powder bed fusion (LPBF) of aluminum alloy (AA) 6061 used powder bed heating at 500 °C in combination with other experimentally determined processing parameters to produce crack-free components. In addition, melt-pool banding, which is a normal solidification feature in LPBF, was eliminated, illustrating solidification process modification as a consequence of powder bed heating. Corresponding microindentation hardness and tensile testing of the as-fabricated AA6061 components indicated an average Vickers hardness of HV 54, and tensile yield, ultimate strength, and elongation values of 60 MPa, 130 MPa, and 15%, respectively. These mechanical properties and those of heat treated parts showed values comparable to annealed and T6 heat treated wrought products, respectively. X-ray diffraction and optical microscopy revealed columnar grain growth in the build direction with the as-fabricated, powder-bed heated product microstructure characterized by [100] textured, elongated grains (∼ 25 μm wide by 400 μm in length), and both intragranular and intergranular, noncoherent Al-Si-O precipitates which did not contribute significantly to the mechanical properties. The results of this study are indicative that powder bed heating may be used to assist with successful fabrication of AA6061 and other alloy systems susceptible to additive manufacturing solidification cracking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.