Abstract
An Al 2O 3-based composite ceramic tool material reinforced with WC microparticles and TiC nano-particles was fabricated by using hot-pressing technique with MgO and NiO as sintering aids. The experimental results showed that optimal mechanical properties were achieved for the composite with the addition of 24 vol.% TiC nano-particles and 16 vol.% WC microparticles, with the flexural strength, fracture toughness and Vicker's hardness being 842 MPa, 6.82 MPa m 1/2 and 22.19 GPa, respectively. The microstructure and phase composition of the composites were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The fracture surface of the Al 2O 3/16 vol.%WC/24 vol.%TiC micro- nano-composite was characterized by a mix of intergranular and transgranular fracture as a result of the presence of both intergranular and intragranular secondary phase particles. It is believed that inhibition of matrix grain growth by intergranular secondary phase particles, sub-grain boundaries and dislocations pinning inside Al 2O 3 grains induced by intragranular TiC nano-particles contribute to the strengthening of the composite. Meanwhile, the dislocations and microcracks inside the matrix grains can also increase the flaw-tolerance leading to high toughness of the composite. Additionally, some extrinsic processes including crack deflection, crack bridging and crack branching caused by the microstructural discontinuities and local stress state can absorb a great amount of fracture energy, which are beneficial for the toughening of the composite. However, future research will need to quantitatively understand the synergistic effect of TiC nano-particles and WC microparticles on strengthening and toughening mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.