Abstract

During boreal winter, there is a prominent maximum of intraseasonal sea-surface temperature (SST) variability associated with the Madden–Julian Oscillation (MJO) along a Thermocline Ridge located in the southwestern Indian Ocean (5°S–10°S, 60°E–90°E; TRIO region). There is an ongoing debate about the relative importance of air-sea heat fluxes and oceanic processes in driving this intraseasonal SST variability. Furthermore, various studies have suggested that interannual variability of the oceanic structure in the TRIO region could modulate the amplitude of the MJO-driven SST response. In this study, we use observations and ocean general circulation model (OGCM) experiments to quantify these two effects over the 1997–2006 period. Observational analysis indicates that Ekman pumping does not contribute significantly (on average) to intraseasonal SST variability. It is, however, difficult to quantify the relative contribution of net heat fluxes and entrainment to SST intraseasonal variability from observations alone. We therefore use a suite of OGCM experiments to isolate the impacts of each process. During 1997–2006, wind stress contributed on average only about 20% of the intraseasonal SST variability (averaged over the TRIO region), while heat fluxes contributed about 70%, with forcing by shortwave radiation (75%) dominating the other flux components (25%). This estimate is consistent with an independent air-sea flux product, which indicates that shortwave radiation contributes 68% of intraseasonal heat flux variability. The time scale of the heat-flux perturbation, in addition to its amplitude, is also important in controlling the intraseasonal SST signature, with longer periods favouring a larger response. There are also strong year-to-year variations in the respective role of heat fluxes and wind stress. Of the five strong cooling events identified in both observations and the model (two in 1999 and one in 2000, 2001 and 2002), intraseasonal-wind stress dominates the SST signature during 2001 and contributes significantly during 2000. Interannual variations of the subsurface thermal structure associated with the Indian Ocean Dipole or El Niño/La Niña events modulate the MJO-driven SST signature only moderately (by up to 30%), mainly by changing the temperature of water entrained into the mixed layer. The primary factor that controls year-to-year changes in the amplitude of TRIO, intraseasonal SST anomalies is hence the characteristics of intraseasonal surface flux perturbations, rather than changes in the underlying oceanic state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.