Abstract

Abstract. Measurements at high-Arctic sites (Alert, Nunavut, and Mt. Zeppelin, Svalbard) during the years 2011 to 2013 show a strong and similar annual cycle in aerosol number and size distributions. Each year at both sites, the number of aerosols with diameters larger than 20 nm exhibits a minimum in October and two maxima, one in spring associated with a dominant accumulation mode (particles 100 to 500 nm in diameter) and a second in summer associated with a dominant Aitken mode (particles 20 to 100 nm in diameter). Seasonal-mean aerosol effective diameter from measurements ranges from about 180 in summer to 260 nm in winter. This study interprets these annual cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. Important roles are documented for several processes (new-particle formation, coagulation scavenging in clouds, scavenging by precipitation, and transport) in controlling the annual cycle in Arctic aerosol number and size. Our simulations suggest that coagulation scavenging of interstitial aerosols in clouds by aerosols that have activated to form cloud droplets strongly limits the total number of particles with diameters less than 200 nm throughout the year. We find that the minimum in total particle number in October can be explained by diminishing new-particle formation within the Arctic, limited transport of pollution from lower latitudes, and efficient wet removal. Our simulations indicate that the summertime-dominant Aitken mode is associated with efficient wet removal of accumulation-mode aerosols, which limits the condensation sink for condensable vapours. This in turn promotes new-particle formation and growth. The dominant accumulation mode during spring is associated with build up of transported pollution from outside the Arctic coupled with less-efficient wet-removal processes at colder temperatures. We recommend further attention to the key processes of new-particle formation, interstitial coagulation, and wet removal and their delicate interactions and balance in size-resolved aerosol simulations of the Arctic to reduce uncertainties in estimates of aerosol radiative effects on the Arctic climate.

Highlights

  • The climate impact of aerosols strongly depends on aerosol number and size distributions (Haywood and Boucher, 2000; Lohmann and Feichter, 2005)

  • Croft et al.: Processes controlling the annual cycle of Arctic aerosol number complex aerosol feedbacks and strong seasonal aerosol cycles that make study of aerosol–climate interactions challenging in this remote region (Browse et al, 2012, 2014)

  • To address a portion of this challenging puzzle, this study focuses on understanding the processes that control the Arctic aerosol number and size distributions over the entire annual cycle

Read more

Summary

Introduction

The climate impact of aerosols strongly depends on aerosol number and size distributions (Haywood and Boucher, 2000; Lohmann and Feichter, 2005). Korhonen et al (2008) conducted a pioneering global aerosol model study to interpret the processes controlling the spring-to-summer transition in Arctic aerosol number and size observed from Svalbard and the shipboard campaigns of Heintzenberg et al (2006). We use the GEOS-Chem global chemical transport model (Bey et al, 2001; www.geos-chem.org) with the size-resolved aerosol microphysics package TOMAS (D’Andrea et al, 2013; Pierce et al, 2013; Trivitayanurak et al, 2008) to examine the relative importance of various aerosol processes (NPF, emissions, removal, and microphysical processes such as condensation and coagulation) in controlling the annual cycle of aerosol number and size distribution in the Arctic. We subsequently present the process rates that control the aerosol annual cycles in our simulations

Measurements at Alert
GEOS-Chem-TOMAS model description
Simulations and revisions to model parameterizations
Observed annual cycle in Arctic aerosol number and size
Process rates controlling the annual cycle in Arctic aerosol number and size
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call