Abstract

Samples have been collected from inflows into railway tunnels in the Triassic sandstone aquifer beneath Liverpool and the Mersey Estuary, England, U.K. These provide a profile through a saline–freshwater mixing zone. Analyses were made of major anions and cations, δ 34S and δ 18O in SO 4, δ 13C in dissolved inorganic C and 87Sr/ 86Sr. The data demonstrate that the presence of a low permeability fault exerts a strong control on the local groundwater chemistry. On the estuary side of the fault, groundwater chemistry is dominated by mixing of intruding estuary water, which is modified by SO 4 reduction and calcite dissolution, with fresh groundwater. The environment of SO 4 reduction in the tidal estuary is one of repeated reduction and re-oxidation of S in an open system and has resulted in virtually no change in S isotopic composition, but an enrichment in residual SO 4 δ 18O of 1.5‰. Groundwater chemistry on the landward side of the fault is primarily the result of recharge in an urban environment. There is also evidence that saline water has been present in this region of the aquifer in the past and that this has now been flushed by fresh groundwaters. This saline water was either transported along the landward side of the fault from nearer the estuary or more probably transmitted across the fault. Both mechanisms would have been driven by large landward head gradients caused by heavy industrial abstraction earlier this century. This has produced a zone of groundwaters depleted in Ca and radiogenic Sr and enriched in Na as a result of ion exchange between the fresh groundwaters and the aquifer previously occupied by more saline water. Sulphur isotopic composition, however, shows no variation since SO 4 does not undergo significant ion exchange. A tracer test from a borehole to the tunnels showed multiple breakthroughs to some locations indicating a number of different flow paths through the aquifer. The maximum flow velocity recorded in this test was 140 m/d suggesting flow along fractures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.