Abstract

A group of ferrocene-containing poly(phenylacetylene)s (PPAs) with different alkyl spacers were synthesized by using organorhodium complexes [Rh(diene)Cl](2) and Rh (+)(nbd)[C(6)H(5)B (-)(C(6)H(5))(3)] as catalysts. With the aid of pi-pi interactions between the walls of carbon nanotubes (CNTs) and the PPA skeleton together with the ferrocene pendants, the polymer (P 1, P2(5) and P2(10)) chains effectively wrapped round the shells of both single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs). The "additive effect" of the PPA skeleton and the ferrocene pendants in dispersing the SWNTs and MWNTs resulted in the generation of highly soluble hybrids. The solubilities of P 1-functionalized SWNTs and MWNTs in tetrahydrofuran (THF) are up to 633 mg/L and 967 mg/L, respectively. They are much higher than the solubilities of M 1-modified SWNTs and MWNTs, which are only 167 mg/L and 133 mg/L in THF. The results indicate the existence of a powerful polymer effect on dispersing CNTs. The high solubilities of the hybrids in organic solvents allowed us to fabricate high-quality and large-area films. Meanwhile, the desirable loading of ferrocene-containing PPAs onto the CNTs offered polymer/CNTs hybrids with multiple redox centers and ferrocene-featured electrochemical properties. The P 1/MWNT hybrid exhibits evident optical-limiting properties. At high incident laser fluence, the optical-limiting power of P 1/MWNT is higher than that of C(60), a well-known optical limiter. Thermal analyses indicate that the decomposition temperatures ( T(d), the temperature at which a sample loses its 5% weight) for P1 and P1/MWNT are 342 and 346 degrees C, respectively, much higher than that for PPA (225 degrees C). Thus the attachment of a ferrocene pendant to a PPA backbone, followed by hybridization with CNTs, improved the thermal stability. Upon pyrolysis, both the polymer and the polymer/CNTs hybrid gave rise to superparamagnetic ceramics; the saturation magnetizations ( M(s)) of the ceramics derived from P1 and P1/MWNT are 29.9 and 26.9 emu/g, respectively. The latter datum is in the list of the best results reported for the magnetic nanocomposites obtained by the attachment of magnetic nanoparticles onto CNTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.