Abstract
This paper presents an on-chip process, voltage and temperature (PVT) compensation technique for a 1-MHz monolithic clock oscillator in a CMOS process. The oscillator is based on carrier mobility and frequency-to-voltage converter (FVC), which is based on charge pump circuit. An adaptive charge current maintains a constant frequency without trimming. Furthermore, a reference voltage with a second-order temperature coefficient further compensates the variation of frequency with temperature. It improves the accuracy of existing carrier-mobility-based oscillator, from 4.5% to 2.3%. The circuit was designed in a 130 nm CMOS 3.3 V device process. The results show that the output frequency is within 2.3% variation in the worst case. The variations of frequency with process, temperature (−40 to 125°C) and power supply are within 1.8%, 0.8% and 0.2%/V, respectively. It achieves a CMOS monolithic clock oscillator insensitive to PVT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.