Abstract

In this study, a simple approach to stabilize reactive high power impulse magnetron sputtering process in the transition zone between the metallic and oxide modes was investigated. The method is based on the use of peak current value as feedback and control signal. It was shown that the change in the state of the target surface causes almost instantaneous change in the amplitude and shape of the current pulses. To stabilize the deposition process, the pulse frequency was regulated to maintain a constant maximum discharge current. The hysteresis behavior and the variations of the pulse current waveforms over a wide range of O2 flow rates and pulse frequencies during a reactive HiPIMS deposition of gadolinia-doped ceria (GDC) thin films in an Ar-O2 atmosphere were examined. Stable process conditions were maintained at the O2 flow from 0.9 to 3.9 sccm by adjustment of the pulse frequency from 1.45 to 2.9 kHz. GDC films deposited using peak current regulation exhibited a stable stoichiometry and high deposition rate in comparison with films obtained without process stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.