Abstract

Objective. Memory is formed by the interaction of various brain functions at the item and task level. Revealing individual and combined effects of item- and task-related processes on retrieving episodic memory is an unsolved problem because of limitations in existing neuroimaging techniques. To investigate these issues, we analyze fast and slow optical signals measured from a custom-built continuous wave functional near-infrared spectroscopy (CW-fNIRS) system. Approach. In our work, we visually encode the words to the subjects and let them recall the words after a short rest. The hemodynamic responses evoked by the episodic memory are compared with those evoked by the semantic memory in retrieval blocks. In the fast optical signal, we compare the effects of old and new items (previously seen and not seen) to investigate the item-related process in episodic memory. The Kalman filter is simultaneously applied to slow and fast optical signals in different time windows. Main results. A significant task-related HbR decrease was observed in the episodic memory retrieval blocks. Mean amplitude and peak latency of a fast optical signal are dependent upon item types and reaction time, respectively. Moreover, task-related hemodynamic and item-related fast optical responses are correlated in the right prefrontal cortex. Significance. We demonstrate that episodic memory is retrieved from the right frontal area by a functional connectivity between the maintained mental state through retrieval and item-related transient activity. To the best of our knowledge, this demonstration of functional NIRS research is the first to examine the relationship between item- and task-related memory processes in the prefrontal area using single modality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.