Abstract

In this paper, uniform and variable edge microgeometry design inserts are utilised and tested for 3D turning process. In 3D tool engagement with workpiece, thickness of the chip varies from a maximum equal to the feed rate (at primary cutting edge) to a minimum on the tool's corner radius (at trailing cutting edge). The ideal tool edge preparation should posses a variable configuration which has larger edge radius at the primary cutting edge than at the trailing cutting edge. Here the key parameter is the ratio of uncut chip thickness to edge radius. If a proper ratio is chosen for given cutting conditions, a variable cutting edge along the corner radius can be designed or 'engineered'. In this study, Finite Element Modelling (FEM)-based 3D process simulations are utilised to predict forces and temperatures on various uniform and variable edge microgeometry tools. Predicted forces are compared with experiments. The temperature distributions on the tool demonstrate the advantages of variable edge microgeometry design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.