Abstract
For the life cycle scenario of bioethanol production from unutilized rice straw, the life cycle stage of paddy rice cultivation can be excluded with a zero-inventory allocation rule, i.e., rice straw with no applied valorization in current practice. This study evaluates the life cycle net energy analysis and greenhouse gas (GHG) assessment for a scaled-up bioethanol production plant using unutilized rice straw as the feedstock. The process simulation technique is integrated to model a scaled-up production plant to produce bioethanol at 99.7 vol% purity from unutilized rice straw, and the simulation results are retrieved to calculate inventory data for the life cycle assessment (LCA). The simulated mass flow and energy flow results are comparable with that of real plants, reported in the published literature, which validates the process simulations in this study. Including energy generation using waste flows in the process (i.e., wastewater and solid residues), the life cycle net energy analysis results show a net energy gain of 7804.0 MJ/m3 of bioethanol with a net renewable energy gain of 38230.9 MJ/m3 of bioethanol that corresponds to a net energy ratio of 1.20 and renewability factor of 5.49. The life cycle GHG assessment exhibits a net global warming potential of 584.8 kg CO2 eq/m3 of bioethanol. The effect of system boundary expansion up to the end-of-life stage as gasohol (E10), the sensitivity of the key process parameters, and the economic benefit via valorization of unutilized rice straw are further analyzed and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.