Abstract
A new approach that substitutes the original two-step olefinic alkylation of thiophenic sulfur (OATS) technology with a reactive distillation (RD) column was proposed to remove sulfur compounds from fluid catalytic cracking (FCC) gasoline. 3-Methylthiophene (3MT) and isobutylene (IB) were designated as the model compounds for sulfide and olefin, respectively; NKC-9 cation exchange resin mixed with the 2 mm × 2 mm θ ring packing was used as the catalyst bed. The process parameters such as feed composition, molar ratio of 3MT to IB, and reflux ratio were investigated experimentally in the RD column. Simulation for this process was carried out by using the equilibrium stage model—the RADFRAC module of Aspen Plus. The multicomponent vapor–liquid equilibria were predicted by an UNIQUAC method, and the kinetics model that is essential in the RD process was obtained from our previous work. The key design factors (e.g., number of reactive and nonreactive stages, location of feed stage, column pressure, mass ratio...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.