Abstract

Gradients in wave-driven alongshore sediment transport influence the morphologies of sediment-covered coastlines on a range of spatial and temporal scales, affecting accretion and erosion patterns relevant to human development. Recent theoretical findings predict that a correlation between shoreline change and shoreline curvature results from patterns of alongshore sediment flux; the sign (positive or negative) of that correlation depends on whether high- or low-angle waves dominated the wave climate. Using lidar surveys of the northern North Carolina coast from 1996–2005 to document shoreline change and quantify alongshore patterns of erosion and deposition, we isolate these signals diagnostic of alongshore-transport processes. Our analyses show a persistent, significant negative correlation between shoreline-position change and shoreline curvature consistent with a low-angle-dominated incident wave climate over the last decade. At large spatial scales, convex-seaward promontories have eroded landward, while concave-seaward bays have aggraded seaward, resulting in an apparent diffusion of alongshore morphological features

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call