Abstract

This paper studies the process scalability of pulse-mode CMOS circuits for analog 2-D convolution in computer vision systems. A simple, scalable architecture for an integrate and fire neuron is presented for implementing weighted addition of pulse-frequency modulated (PFM) signals. Sources of error are discussed and modeled in a detailed behavioral simulation and compared with equivalent transistor-level simulations. Next, the design of a 180-nm PFM chip with programmable weights is presented, and full image convolutions are demonstrated with the analog hardware. Preliminary chip measurements for a 45-nm implementation are also included to demonstrate process scalability. Design considerations for porting this architecture to nanometer processes, including FinFET technologies, are then discussed. This paper concludes with a simulation study on scaling down to 10 nm using a predictive technology model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.