Abstract

Titanium alloys have high specific strength and excellent high-temperature properties. However, Ti alloys have limited weldability with other metals due to the formation of brittle intermetallic compounds. Moreover, when steel is a counterpart of dissimilar metal joining, the soundness of weld is hardly achieved due to weld defects. Numerous studies have been conducted to achieve joint strength by minimizing the effects of Fe-Ti intermetallic compounds. In most studies, pure titanium or Ti-6Al-4V alloy were selected as the Ti base metal, whereas stainless steel, low carbon steel, or alloy steel were selected as the steel base metal. To date, joining processes such as diffusion bonding, brazing, fusion welding, and solid-state joining have been investigated. In this study, the characteristics of each of these joining processes were reviewed. More specifically, the formation of intermetallic compounds was analyzed when Ti alloy and steel were directly joined without using interlayer materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.