Abstract
Fused silica was polished to a high quality by a CO2 laser beam with a rapid scanning rate. The rapid scanning rate produced a line laser heat source, resulting in a "polishing line" during the polishing process. The Taguchi method was used to evaluate the comprehensive influence of polishing process parameters on the polishing qualities. Four factors, namely the length of laser reciprocating scanning (A), laser beam scanning speed (B), feed speed (C), and defocusing amount (D), were investigated in this study. The optimal process parameter combination (A1B1C1D1) was obtained. The surface roughness of fused silica was reduced from Ra = 0.157 μm to 0.005 μm. Through analysis of variance (ANOVA), it was found that laser beam scanning speed (B) had a significant influence on the polishing quality. The interaction of the two factors plays a decisive role in the determination of the best process parameters, and the influence of other multi-factor interaction can be ignored; the interaction between A × B is the largest, with a contribution of 42.69%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.