Abstract

Double-pulsed gas metal arc welding (DP-GMAW) is a high-performance welding method with low porosity and high frequency. Periodic shrinkage and expansion of the melt pool during DP-GMAW leads to unusual remelting, and the re-solidification behavior of the weld metal can significantly refine the weld structure. The advantages of DP-GMAW have been proven. In order to better apply DP-GMAW to aluminum alloy arc additive manufacturing, in this paper, the single-pass deposition layer parameters (double-pulse amplitude, double-pulse frequency and travel speed) of DP-GMAW will be optimized using the response surface method (RSM) with the width, height, and penetration of the deposition layer as the response values to find the superior process parameters applicable to the additive manufacturing of aluminum alloy DP-GMAW. The results show that the aluminum alloy components made by DP-GMAW additive are well formed. Due to the stirring of double-pulse arc and the abnormal remelting and solidification of metal, the microstructures in the middle and top areas show disordered growth. The average ultimate tensile strength of the transverse tensile specimen of the member can reach 175.2 MPa, and the elongation is 10.355%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call