Abstract

Inkjet printing of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN), a small molecule organic semiconductor, is performed on two types of substrates. Hydrophilic SiO2 substrates prepared by a combination of surface treatments lead to either a smaller size or a coffee-ring profile of the single-drop film. A hydrophobic surface with dominant dispersive component of surface energy such as that of a spin-coated poly(4-vinylphenol) film favors profile formation with uniform thickness of the printed semiconductor owing to the strong dispersion force between the semiconductor molecules and the hydrophobic surface of the substrate. With a hydrophobic dielectric as the substrate and via a properly selected solvent, high quality TIPS-PEN films were printed at a very low substrate temperature of 35°C. Saturated field-effect mobility measured with top-contact thin-film transistor structure shows a narrow distribution and a maximum of 0.78cm2V−1s−1, which confirmed the film growth on the hydrophobic substrate with increased crystal coverage and continuity under the optimized process condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.