Abstract

Present investigation deals with the optimization of biodegradation process of black liquor (BL) performed by novel bacterial consortium which consist of two indigenous bacterial strains viz., Bacillus megaterium ETLB-1 and Pseudomonas plecoglossicida ETLB-3. During the process, dextrose as carbon; sodium nitrate as nitrogen; C:N ratio (2.5:1); temperature (35°C); pH (8.0); and agitation rate (160 rpm) were observed as optimum conditions for bacterial consortium. Further, these conditions were assessed for the performance of immobilized consortium that exhibit conspicuous reduction in color (96.1%), lignin (91.5%), biological oxygen demand (96.7%), and chemical oxygen demand (86.4%) of black liquor. A maximum percent reduction of 90.7% in chlorophenols (up to 10.03 mg/L) with highest release of chloride ions i.e. 1,233 mg/L was recorded under optimum conditions. Bioligninolytic activities with the presence of lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (LAC) was observed as 6.94 U/ml, 9.35, and 8.96 U/ml at different time intervals viz. 120, 144, and 96 h, respectively, during the biodegradation study. Further, gas chromatography/mass spectroscopy revealed presence of certain organic acids, degradation of majority of the toxic compounds, and generation of certain high-value compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.