Abstract

Laser forming is a flexible sheet metal manufacturing technique capable of producing various shapes, without hard tools and external forces, by irradiation across the surface of the metal piece. A three-dimensional thermal-elasto-plastic (TEP) finite element model for a straight line laser forming process has been developed during the course of this study, which simulates bend angles and temperature distributions. Laser forming process optimization and material sensitivity are investigated. In order to seek the optimal process conditions to generate a desired bend angle in the multi-scan laser bending process, an optimization algorithm based on the approximation of objective function and state variables is integrated into the numerical model. An optimal set of process parameters such as laser power, scan speed, beam diameter and the number of scans are obtained with optimization procedure. In order to assess process sensitivity to material roperties, associations between bend angle and material properties are statistically determined using the Pearson product-moment correlation coefficient via Monte Carlo simulations, for which a large number of the finite element simulations are carried out. The material properties of interest include the coefficient of thermal expansion, thermal conductivity, specific heat, modulus of elasticity, and Poisson's ratio. Results show that the process optimization coupled with finite element analysis can be used to determine processing parameters, and that the material properties of primary importance are the coefficient of thermal expansion, thermal conductivity and specific heat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call