Abstract

The synthesis of D-isoascorbyl stearate from D-isoascorbic acid and stearic acid with immobilized lipase (Novozym(®)435) as catalyst was studied. Response surface methodology and Box-Behnken design with six variables and three levels were employed to evaluate the effects of processing conditions on the conversion of D-isoascorbic acid. The results confirmed that the response surface method and statistical analysis were proved to be useful in developing optimal conditions for D-isoascorbyl stearate synthesis. The optimum conditions were predicted as follows: reaction temperature 48°C, reaction time 17.7h, immobilized lipase amount 50.0% (w/w, of D-isoascorbic acid), substrate molar ratio 9:1 (stearic acid to D-isoascorbic acid), D-isoascorbic acid concentration 0.14mol/L (based on solvent), 4A molecular sieve addition 200g/L (based on solvent), and the optimal conversion was 90.6%. Through the kinetics model fitting of the esterification, it was considered that the esterification conformed to a Ping-Pong bi-bi kinetic model with D-isoascorbic acid inhibition, and the obtained kinetic constants showed that the inhibition of D-isoascorbic acid and the enzyme affinity to substrate were abate with the increase of the reaction temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.