Abstract

Abstract Ultrasonic metal welding is one of the key technologies in manufacturing lithium batteries, and the welding quality directly determines the battery performance. Therefore, an online welding process monitoring system is critical in identifying abnormal welding processes, detecting defects, and improving battery quality. Traditionally, the peak welding power is used to indicate abnormal process signals in welding process monitoring systems. However, since various factors have complex impacts on the electric power signals of ultrasonic welding processes, the peak power is inadequate to detect different types of welding defects. Therefore, a signal pattern matching method is proposed in this study, which is based on the electric power signal during the entire welding process and thus is capable of identifying abnormal welding processes in various conditions. The proposed method adopts isometric transformation and homogenization as signal pretreatment methods, and Euclidean distance is used to calculate the similarity metric for signal matching. The effectiveness and robustness of the proposed method are experimentally validated under different abnormal welding conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.