Abstract

This paper proposes a multivariate process monitoring method based on probabilistic principal component analysis (PPCA). First we will summarize several well-known statistical process monitoring methods, e.g. univariate/multivariate Shewhart charts, and the PCA-based method, i.e. Q and Hotelling's T 2 charts. And then the probabilistic method will be proposed and compared to the existing methods. In essence, the univariate Shewhart chart, multivariate Shewhart chart, Q chart, and T 2 chart are unified to the probabilistic method. The PPCA model is calibrated by the expectation and maximization (EM) algorithm similar to PCA by NIPALS algorithm; EM algorithm will be explained briefly in the article. Finally, through an illustrative example, we will show how the probabilistic method works and is applied to the process monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.