Abstract

Some industrial processes frequently change due to various factors, such as alterations of feedstocks and compositions, different manufacturing strategies, fluctuations in the external environment and various product specifications. Most multivariate statistical techniques are under the assumption that the process has one nominal operation region. The performance of it is not good when they are used to monitor the process with multiple operation regions. In this paper, we developed an effective approach for monitoring multi-mode continuous processes with the following improvements. 1). Offline mode identification algorithm is proposed to identify (i) stable modes, (ii) transitional modes between two stable modes, and (iii) noise. 2). According to the data distribution, proper multivariate statistical algorithm is selected automatically to realize fault detection for each mode. 3). When online monitoring, the right model is chosen based on Mode Transformation Probability (MTP), which makes full use of the empirical knowledge hidden in offline data. This method can enhance real-time performance of online mode identification for continuous process and timely monitoring can be further realized. The proposed method is illustrated by application in furnace temperature system of continuous annealing line. The effectiveness of mode identification and fault detection is demonstrated in the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.