Abstract

To cope with the computational intensity associated with classification tree analysis and the multicolinearity in the process data, a newly developed process monitoring scheme integrating classification tree and Fisher Discriminant Analysis (FDA) is developed. FDA extracts the most significant components in the original process data and achieves optimal discriminating among different faults. Classification tree uses the FDA scores, which are the lower dimensional representation produced by FDA, to separate observations into different fault classes. A stopping rule is applied to determine the optimal order of FDA. Two case studies are presented to illustrate the effectiveness of the proposed methods compared with the original classification tree. The new method generates better classification accuracy and uses less construction time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.