Abstract

Abstract Cellulose can be directly dissolved in cold alkali without derivatization. However, this requires low cellulose molecular weight, i. e. low pulp viscosity, preferably below 300 mL g−1. This can be achieved by for example acid or enzymatic hydrolysis of the dissolving pulp. However, it would be beneficial to manufacture pulp with sufficiently low viscosity without an additional treatment stage prior to dissolution. Unit processes in pulping can be operated in such a way as to reduce the molecular weight of cellulose. The approach of the study was to modify the conditions in unit pulping processes in order to obtain a low pulp viscosity of fully bleached prehydrolysis kraft pulp. A high charge of alkali in the oxygen delignification reduced the cellulose molecular weight significantly. Increased temperature, 120 °C compared to 98 °C, had also a significant effect on viscosity. By performing peroxide bleaching at acidic pH, the viscosity could be sufficiently reduced even when oxygen delignification was performed at lower temperature. However, for high brightness, a chlorine dioxide stage is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.