Abstract

Computational fluid dynamics (CFD) is a powerful simulation tool that was successfully used to investigate mixing, turbulence, and shear in a laboratory-scale MSMPR and batch cooling crystallizer for an organic fine chemical. CFD gives a qualitative engineering insight into the effects of the impeller configuration on the crystallization rates and particle size distribution. A process-modelling tool, gPROMS (Process Systems Enterprise), was used to model particle size and size distribution in both batch and continuous laboratory-scale crystallization processes with predictive simulations in good agreement with experimental results. CFD simulations of large-scale crystallizations using constant specific power input per unit mass, predict an increase in macromixing and decrease in micromixing and turbulence. This effect should improve process performance of batch cooling crystallizers on scale-up including the product quality of the final solid form in terms of the particle size and crystal habit. This is d...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call