Abstract

In this study, fluoride removal from polluted potable water using magnetic carbon-based adsorbents derived from agricultural biomass was thoroughly investigated. An experimental matrix is designed considering the interactive effects of independent process variables (pH, adsorbent dose, contact time, and initial fluoride concentration) on the removal efficiency. Isotherms and kinetics studies, as well as anions interactions, were also investigated to understand the adsorption mechanisms further. The model parameters of isotherms and kinetics are estimated using nonlinear differential evolution optimization (DEO). Approaches like adaptive neuro-fuzzy inference system (ANFIS) and response surface methodology (RSM) are implemented to predict the fluoride removal and identify the optimal process values. The optimum removal efficiency of GAC-Fe3O4 (89.34%) was found to be higher than that of PAC-Fe3O4 (85.14%). Kinetics experiments indicated that they follow the intraparticle diffusion model, and adsorption isotherms indicated that they follow Langmuir and Freundlich models. Both PAC-Fe3O4 and GAC-Fe3O4 adsorbents have shown an adsorption capacity of 1.20 and 2.74 mg/g, respectively. The model predictions from ANFIS have a strong correlation with experimental results and superior to RSM predictions. The shape of the contours depicts the nonlinearity of the interactive effects and the mechanisms in the adsorption process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.