Abstract

This paper presents artificial intelligence-based process modeling and optimization strategies, namely, support vector regression – differential evolution (SVR-DE) for modeling and optimization of catalytic industrial ethylene oxide (EO) reactor. In the SVR-DE approach, a support vector regression model is constructed for correlating process data comprising values of operating and performance variables. Next, model inputs describing process operating variables are optimized using Differential Evolution (DE) with a view to maximize the process performance. DE possesses certain unique advantages over the commonly used gradient-based deterministic optimization algorithms. The SVR-DE is a new strategy for chemical process modeling and optimization. The major advantage of the strategy is that modeling and optimization can be conducted exclusively from the historic process data wherein the detailed knowledge of process phenomenology (reaction mechanism, kinetics, etc.) is not required. Using SVR-DE strategy, a number of sets of optimized operating conditions leading to maximized EO production and catalyst selectivity were obtained. The optimized solutions, when verified in an actual plant, resulted in a significant improvement in the EO production rate and catalyst selectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.