Abstract

Content assessment has broadly improved in e-learning scenarios in recent decades. However, the e-Learning process can give rise to a spatial and temporal gap that poses interesting challenges for assessment of not only content, but also students’ acquisition of core skills such as self-regulated learning. Our objective was to discover students’ self-regulated learning processes during an e-Learning course by using Process Mining Techniques. We applied a new algorithm in the educational domain called Inductive Miner over the interaction traces from 101 university students in a course given over one semester on the Moodle 2.0 platform. Data was extracted from the platform’s event logs with 21,629 traces in order to discover students’ self-regulation models that contribute to improving the instructional process. The Inductive Miner algorithm discovered optimal models in terms of fitness for both Pass and Fail students in this dataset, as well as models at a certain level of granularity that can be interpreted in educational terms, which are the most important achievement in model discovery. We can conclude that although students who passed did not follow the instructors’ suggestions exactly, they did follow the logic of a successful self-regulated learning process as opposed to their failing classmates. The Process Mining models also allow us to examine which specific actions the students performed, and it was particularly interesting to see a high presence of actions related to forum-supported collaborative learning in the Pass group and an absence of those in the Fail group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call