Abstract
Polished sections of pyrometallurgical intermediate products from a simulated commercial flash furnace were examined by reflected light microscopy, scanning electron microscopy-energy dispersive spectrometry and electron backscatter analysis, and microprobe analysis for phase and textural relationships. The smelter feed is a copper concentrate from a porphyry copper deposit. The concentrate consists primarily of chalcopyrite, bornite, and pyrite with smaller amounts of covellite, chalcocite, molybdenite, magnetite, galena, and sphalerite. The flash furnace reactions for pyrite and chalcopyrite can be observed by reflected light microscopy. Reacted angular particles of pyrite exhibit successive rims of fibrous pyrrhotite and hematite or magnetite. Reacted angular chalcopyrite particles show successive rims of bornite, digenite, and chalcocite. Spherical particles, formed by the complete melting of former pyrite and chalcopyrite particles, consist of variable amounts of granular pyrrhotite with magnetite rims and minor hematite. Spherical particles, formed by the complete melting of former chalcopyrite particles, exhibit exsolution intergrowths with varying proportions of intermediate solid solution, bornite, digenite, and chalcocite, and have rims of hematite, magnetite, and copper-iron spinel. Electron microprobe analyses show that the iron oxides contain significant copper and minor zinc in their structures. Sphalerite and molybdenite do not show evident mineralogical reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.