Abstract

As the goals of ensuring process safety and energy efficiency become ever more challenging, engineers increasingly rely on data collected from such processes for informed decision making. During recent decades, extracting and interpreting valuable process information from large historical data sets have been an active area of research. Among the methods used, principal component analysis (PCA) is a well-established technique that allows for dimensionality reduction for large data sets by finding new uncorrelated variables, namely principal components (PCs). However, it is difficult to interpret the derived PCs, as each PC is a linear combination of all of the original variables and the loadings are typically nonzero. Sparse principal component analysis (SPCA) is a relatively recent technique proposed for producing PCs with sparse loadings via the variance–sparsity trade-off. We propose a forward SPCA approach that helps uncover the underlying process knowledge regarding variable relations. This approach s...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.