Abstract
A study on the intensification of ozone mass transfer in rotational flow field and UC-RF coupled-field was conducted. Two important operational parameters namely liquid flow rate and ultrasonic power, were optimized with regard to the ozone mass transfer efficiency. Results showed that the mass transfer coefficient (KLa) increased with liquid flow rate (up to 14 L min−1) and ultrasonic power (up to 1000 W). The maximum KLa value (1.0258 min−1) was obtained with the UC-RF coupled-field. Moreover, the reinforcement of mass transfer efficiency was promoted by the rotational flow field and UC-RF coupled-field due to the increase in the ozone-liquid contact area, intensification of turbulence, acceleration of interface renewal, and extension of residence time. Ozone microbubbles rose in the reactor in a spiral manner. In addition, the microbubbles produced in the rotational flow field served as cavitation nucleus that helped to generate the cavitation effect. The effective degradation of di-butyl phthalate (DBP) confirmed that its removal was improved by the ozone-liquid mass transfer and the promotion of hydroxyl radicals (·OH) production. The synergistic effect of DBP degradation via ultrasound-enhanced ozonation was significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.