Abstract

In the present study, different metals included Ni and Cu were separately loaded on the mixed matrix of Al2O3-TiO2 to be used in catalytic-oxidative-adsorptive desulfurization of liquid hydrocarbon model fuel. The prepared catalysts were characterized by X-ray diffraction (XRD), N2 adsorption–desorption and field emission scanning electron microscopy (FE-SEM). The effects of different important parameters on catalytic-adsorptive desulfurization in the presence of hydrogen peroxide including sulfur/catalyst ratio (mg g−1) in the range of 4–12, oxidant/sulfur molar ratio (mol mol−1) of 4–10, temperature in the range of 30 °C–70 °C, and reaction time of 30–90 min. for the model fuel of n-decane with 800 ppm dibenzothiophene were investigated. Response surface methodology was used to design of experiments and explore the synergistic effects of investigated parameters. The results showed that Ni/Al2O3-TiO2 has higher sulfur removal efficiency than Cu/Al2O3-TiO2. Maximum efficiency (83.9%) was achieved when Ni/Al2O3-TiO2 was used at the conditions included sulfur to catalyst ratio = 4 mg g−1, oxidant to sulfur molar ratio = 10 mol mol−1, temperature = 70 °C, and the reaction time = 90 min. It was found that the efficiency of desulfurization for catalysts was increased with decreasing of the sulfur to catalyst ratio and increased when oxidant to sulfur molar ratio, temperature and reaction time increased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.