Abstract
Inspired by the nature fractal structure, a novel honeycomb fractal micro-reactor was designed and applied to intensify both heat and mass transfer in the exothermic conversion of syngas to olefins. The results show that the honeycomb fractal micro-reactor provides more even distribution of temperature profiles, a narrower reactant residence time distribution, and relative smaller pressure drop per unit length, compared with parallel straight microchannel reactor and mini-fixed bed reactor under the same reaction conditions. Owning to the reinforcement of flow separation and convergence in the honeycomb structure, the contact between reactants and catalyst particles were enhanced, leading to a better heat and mass transfer. Under the current range of temperature, pressure and standard GHSV, the honeycomb fractal micro-reactor leads to supreme CO conversion and lower olefins yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.