Abstract

Given the demands human induced pluripotent stem cell (hiPSC)-based therapeutics place on manufacturing, process intensification strategies which rapidly ensure the desired cell quality and quantity should be considered. Within the context of antibody and vaccine manufacturing, one-step inoculation has emerged as an effective strategy for intensifying the upstream process. This study therefore evaluated whether this approach could be applied to the expansion of hiPSCs in flasks under static and in microcarrier-operated stirred bioreactors under dynamic conditions. Our findings demonstrated that high density working cell banks containing hiPSCs at concentrations of up to 100 × 106 cells mL−1 in CryoStor® CS10 did not impair cell growth and quality upon thawing. Furthermore, while cell distribution, growth, and viability were comparable to routinely passaged hiPSCs, those subjected to one-step inoculation and expansion on microcarriers under stirred conditions were characterized by improved attachment efficiency (≈50%) following the first day of cultivation. Accordingly, the process development outlined in this study establishes the foundation for the implementation of this intensified approach at L-scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.