Abstract

The development of process-induced residual stresses in a typical graphitt/epoxy composite material during cure is analyzed in this article. An extensive material characterization study of the resin system was reported in a previous article by the authors [1] and the results of that study are used to develop a cure-dependent viscoelastic material model for the composite system. A finite-element model is developed to solve the stress analysis problem. To overcome large memory storage requirements and lengthy calculation times, a recursive formulation is used in the finite-element analysis. Cure kinetic and heat transfer modeling are evaluated independently using the finite-difference method. Process-induced residual stresses in cross-ply laminates are calculated and the results are compared with elastic solutions. The res ults of the analysis indicate that in certain cases significant residual stresses are present during the cure cycle, even before final cool-down commences. Whether a material experiences significant curing stress before cool-down depends on many factors, including stress relaxation time, equilibrium modulus, the level of chemical shrinkage, and curing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.