Abstract

Pharmaceutical powders are often milled to achieve the optimum particle size. These size reduction processes can introduce dislocations and/or defects onto particle surfaces affecting the overall crystallinity of the powder. If enough energy is imparted, amorphous regions on the particle surfaces may be produced. These amorphous regions have the propensity to absorb significant quantities of water. In this study the effect of sorbed water on the physical characteristics of albuterol sulfate is investigated. Physical properties of this compound are studied in both micronized and unmicronized states using scanning electron microscopy, differential scanning calorimetry, powder x-ray diffraction, solution microcalorimetry, laser diffraction particle size analysis and water vapor sorption analysis. Subtle differences in crystallinity induced by air jet micronization are detected by several analytical methods. Amorphous to crystalline conversions are observed, the kinetics of which are found to be both temperature and relative humidity dependent. These experiments show the dynamic nature of micronized albuterol sulfate and aid in the determination of the actual physical state of this pharmaceutical powder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.