Abstract

Anti-site disorder, arising due to the similar size of Fe and Mo ions in Sr2FeMoO6 (SFMO) double perovskites, hampers spintronic applicability by deteriorating the magnetic response of this double perovskite system. A higher degree of anti-site disorder can also completely destroy the half-metallicity of the SFMO system. To study the effects of different process gas conditions on the anti-site disorder, we have prepared a series of SFMO thin films on SrTiO3 (001) single-crystal substrate using a pulsed laser deposition (PLD) technique. The films are grown either under vacuum or under N2/O2 partial gas pressures. The vacuum-grown SFMO film shows the maximum value of saturation magnetization (MS) and Curie temperature (TC), signaling the lowest anti-site disorder in this series. In other words, there is a long-range Fe/Mo-O-Mo/Fe ferrimagnetic exchange in the vacuum-grown thin film, thereby enhancing the magnetization. Further, all the SFMO films show a semiconducting state with a systematic increase in overall resistivity with the increased anti-site disorder. The electrical conduction mechanism is defined by the variable-range hopping model at low temperatures. Raman spectra show a weak Fano peak, suggesting the presence of electron–phonon coupling in SFMO thin films. These results show the significance of the process gas in causing anti-site disorder, tuning the degree of this disorder and therefore its influence on the structural, magnetic, electrical, and vibrational properties of SFMO thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call